Ontogeny of bite force in a validated biomechanical model of the American alligator.
نویسندگان
چکیده
Three-dimensional computational modeling offers tools with which to investigate forces experienced by the skull during feeding and other behaviors. American alligators (Alligator mississippiensis) generate some of the highest measured bite forces among extant tetrapods. A concomitant increase in bite force accompanies ontogenetic increases in body mass, which has been linked with dietary changes as animals increase in size. Because the flattened skull of crocodylians has substantial mediolaterally oriented muscles, crocodylians are an excellent model taxon in which to explore the role of mediolateral force components experienced by the feeding apparatus. Many previous modeling studies of archosaur cranial function focused on planar analysis, ignoring the mediolateral aspects of cranial forces. Here, we used three-dimensionally accurate anatomical data to resolve 3D muscle forces. Using dissection, imaging and computational techniques, we developed lever and finite element models of an ontogenetic series of alligators to test the effects of size and shape on cranial loading and compared estimated bite forces with those previously measured in vivo in A. mississippiensis We found that modeled forces matched in vivo data well for intermediately sized individuals, and somewhat overestimated force in smaller specimens and underestimated force in larger specimens, suggesting that ontogenetically static muscular parameters and bony attachment sites alone cannot account for all the variation in bite force. Adding aponeurotic muscle attachments would likely improve force predictions, but such data are challenging to model and integrate into analyses of extant taxa and are generally unpreserved in fossils. We conclude that anatomically accurate modeling of muscles can be coupled with finite element and lever analyses to produce reliable, reasonably accurate estimate bite forces and thus both skeletal and joint loading, with known sources of error, which can be applied to extinct taxa.
منابع مشابه
The ontogeny of bite-force performance in American alligator (Alligator mississippiensis)
American alligators Alligator mississippiensis undergo major transformations in morphology and ecology during development. These include several thousand-fold changes in body mass, modified snout and dental proportions, and shifts in diet from small, delicate foodstuffs to the inclusion of increasingly larger, more robust prey. How these changes in anatomical form contribute to actual physical ...
متن کاملOntogenetic changes in jaw-muscle architecture facilitate durophagy in the turtle Sternotherus minor.
Differential scaling of musculoskeletal traits leads to differences in performance across ontogeny and ultimately determines patterns of resource use during development. Because musculoskeletal growth of the feeding system facilitates high bite-force generation necessary to overcome the physical constraints of consuming more durable prey, durophagous taxa are well suited for investigations of t...
متن کاملFeeding biomechanics of the cownose ray, Rhinoptera bonasus, over ontogeny.
Growth affects the performance of structure, so the pattern of growth must influence the role of a structure and an organism. Because animal performance is linked to morphological specialization, ontogenetic change in size may influence an organism's biological role. High bite force generation is presumably selected for in durophagous taxa. Therefore, these animals provide an excellent study sy...
متن کاملAccuracy of mandibular force profiles for bite force estimation and feeding behavior reconstruction in extant and extinct carnivorans.
Mandibular force profiles apply the principles of beam theory to identify mandibular biomechanical properties that reflect the bite force and feeding strategies of extant and extinct predators. While this method uses the external dimensions of the mandibular corpus to determine its biomechanical properties, more accurate results could potentially be obtained by quantifying its internal cortical...
متن کاملDynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis
Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 220 Pt 11 شماره
صفحات -
تاریخ انتشار 2017